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Abstract 

Background:  Massive hemorrhage is the main cause of preventable death after trauma. This study aimed to estab-
lish prediction models for early diagnosis of massive hemorrhage in trauma.

Methods:  Using the trauma database of Chinese PLA General Hospital, two logistic regression (LR) models were 
fit to predict the risk of massive hemorrhage in trauma. Sixty-two potential predictive variables, including clinical 
symptoms, vital signs, laboratory tests, and imaging results, were included in this study. Variable selection was done 
using the least absolute shrinkage and selection operator (LASSO) method. The first model was constructed based on 
LASSO feature selection results. The second model was constructed based on the first vital sign recordings of trauma 
patients after admission. Finally, a web calculator was developed for clinical use.

Results:  A total of 2353 patients were included in this study. There were 377 (16.02%) patients with massive hemor-
rhage. The selected predictive variables were heart rate (OR: 1.01; 95% CI: 1.01–1.02; P<0.001), pulse pressure (OR: 
0.99; 95% CI: 0.98–0.99; P = 0.004), base excess (OR: 0.90; 95% CI: 0.87–0.93; P<0.001), hemoglobin (OR: 0.95; 95% CI: 
0.95–0.96; P<0.001), displaced pelvic fracture (OR: 2.13; 95% CI: 1.48–3.06; P<0.001), and a positive computed tomogra-
phy scan or positive focused assessment with sonography for trauma (OR: 1.62; 95% CI: 1.21–2.18; P = 0.001). Model 1, 
which was developed based on LASSO feature selection results and LR, displayed excellent discrimination (AUC: 0.894; 
95% CI: 0.875–0.912), good calibration (P = 0.405), and clinical utility. In addition, the predictive power of model 1 was 
better than that of model 2 (AUC: 0.718; 95% CI: 0.679–0.757). Model 1 was deployed as a public web tool (http://​82.​
156.​217.​249:​8080/).

Conclusions:  Our study developed and validated prediction models to assist medical staff in the early diagnosis of 
massive hemorrhage in trauma. An open web calculator was developed to facilitate the practical application of the 
research results.
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Background
Trauma is a major global public health problem. Accord-
ing to the World Health Organization, 5.8 million peo-
ple die from trauma each year, accounting for 10% of 
all deaths. Trauma is also the leading cause of death for 

people under the age of 40 worldwide [1]. Massive hem-
orrhage is one of the most serious and life-threatening 
complications caused by trauma, and it is the main cause 
of preventable death in patients with trauma. About 
40% of trauma deaths are attributed to massive hemor-
rhage [2–4]. Grossly visible massive hemorrhages can 
be treated in time by local compression, closure, and 
operation, and the survival rate of patients with trauma is 
higher in medical institutions. However, invisible hemor-
rhage may be overlooked by medical staff. Without inter-
vention, the patients can develop sequential organ failure, 

Open Access

*Correspondence:  cli@tsinghua.edu.cn; lts301@163.com

2 Department of Emergency, First Medical Center, Chinese PLA General 
Hospital, Beijing 100853, China
3 School of Software, Tsinghua University, Beijing 100084, China
Full list of author information is available at the end of the article

http://82.156.217.249:8080/
http://82.156.217.249:8080/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12873-022-00737-y&domain=pdf


Page 2 of 11Guo et al. BMC Emergency Medicine          (2022) 22:180 

coagulation dysfunction, and even death due to insuffi-
cient blood perfusion in a short time. If medical staff can 
identify the condition of traumatic massive hemorrhage 
early, intervene quickly, and actively adjust the treatment 
strategy, the disability and mortality rate due to massive 
traumatic hemorrhage may be reduced, and outcomes of 
severe trauma may be improved [5].

Presently, most prediction models related to traumatic 
hemorrhage are scoring systems based on traditional 
stepwise regression models [6–9], such as the trauma-
associated severe hemorrhage (TASH) score [10] and the 
Prince of Wales (PWH) score [11]. However, these tradi-
tional scores are difficult to solve the problem of multi-
collinearity among a large number of potential predictive 
variables in feature selection. In addition, these scores 
usually require the manual calculation of results, which 
is time-consuming and complex. Lastly, the accuracy of 
these scores decreases by varying degrees over time and 
when applied to people in different regions [12].

Recently, machine learning has played an important 
role in the construction of various clinical prediction 
models. Least absolute shrinkage and selection opera-
tor (LASSO) regression is a powerful machine learning 
tool based on the bias-variance tradeoff theory of feature 
selection, which can minimize the potential collinearity 
of predictive variables and prevent over-fitting of pre-
diction models [13]. However, little attention has been 
paid to its contribution to the field of traumatic hemor-
rhage prediction models. Moreover, vital sign indexes are 
objective measures of human physiological and patho-
logical changes. Vital sign monitoring is non-invasive and 
presents the opportunity for early detection of massive 
hemorrhage in trauma. Therefore, this study intended 
to develop a logistic regression (LR) model for massive 
hemorrhage in trauma based on LASSO regression and 
compare it with an LR model based on vital sign indexes, 
as well as with clinically validated scores, such as the 
TASH and PWH scores. Finally, an open web calculator 
was developed to promote the convenient application of 
the model and assist doctors and nurses to identify trau-
matic massive hemorrhage in the early stage.

Methods
Data sources
The data of this study are from the trauma database of 
the General Hospital of the Chinese People’s Liberation 
Army (PLA) (hereinafter referred to as the trauma data-
base). We included all patients with trauma in the trauma 
database who entered the emergency rescue room 
between January 2015 and March 2022, while excluding 
patients under the age of 16, those with second or fur-
ther repeat admissions after trauma, and a data loss rate 
of more than 20%. The use of relevant de-identified data 

from the trauma database was reviewed by the Medi-
cal Ethics Committee of Chinese PLA General Hospital; 
the ethical batch number is S2021–466-01 and written 
informed consent was waived due to the study design and 
the harmless use of retrospective data.

Potential predictive variables
A total of 62 potential predictive variables were included 
in this study, including demographic data, as well as the 
first recording of clinical symptoms, vital signs, labora-
tory tests, and imaging results after admission (Table 1). 
Among them, demographic data included sex and age. 
Clinical symptoms included unconsciousness and oligu-
ria or anuria. Vital signs included heart rate (HR), res-
piratory rate (RR), pulse pressure (PP), body temperature, 
and peripheral oxygen saturation (SpO2). Laboratory 
tests included blood gas analysis, blood routine test, 
coagulation function, liver function, kidney function, 
electrolytes, myocardial enzymes, and other hematologi-
cal tests. Imaging results included displaced pelvic frac-
tures and results of computed tomography (CT) scan or 
focused assessment with sonography for trauma (FAST) 
positive for traumatic hemorrhage.

Outcomes
In this study, massive hemorrhage was used as the out-
come variable of the prediction model. Presently, there 
is no authoritative standard for the definition of mas-
sive hemorrhage. By consulting previous literature and 
combining our findings with clinical practice, we deter-
mined the screening criteria as follows [4, 14, 15]: 1) mas-
sive transfusion of three or more units of red blood cells 
(RBC) within 1 hour at any time during the first 24 hours 
after admission; 2) embolization or hemostatic surgery 
within 24 hours after admission. If the patients met either 
of the mentioned conditions, they were classified into the 
massive hemorrhage group; otherwise, they were classi-
fied into the non-massive hemorrhage group.

Variable selection and model construction
In this study, two models for predicting massive hemor-
rhage in trauma were developed, and the accuracies of 
the models were compared. First of all, the feature selec-
tion was carried out based on LASSO regression [16], 
and the variable coefficients of 62 potential predictive 
variables were punished by the penalty coefficient λ so 
that the coefficients of relatively unimportant variables 
became 0; these variables were then excluded from the 
model. We selected the predictive variables that were 
shown to have a significant influence on the outcome. 
The value of λ was determined by ten-fold cross-valida-
tion, and the most predictable feature combination was 
selected by the 1 standard error of the minimum criteria 
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Table 1  Comparison of baseline characteristics of patients with trauma in trauma dataset

Characteristic Total Massive Hemorrhage P value

Yes No

No. 2353 377 1976

Male, n (%) 1819 (77.31%) 273 (72.41%) 1546 (78.24%) 0.013*

Age, mean (SD), y 47.25 (17.34) 46.48 (16.01) 47.40 (17.59) 0.340

Clinical symptoms, n (%)

  Unconsciousness 522 (34.30%) 95 (41.67%) 427 (33.00%) 0.011*

  Oliguria or anuria 108 (5.54%) 19 (6.27%) 89 (5.41%) 0.550

Vital signs, mean (SD)

  Heart rate, beats/min 95.45 (24.22) 108.33 (27.15) 92.98 (22.81) < 0.001*

  Respiratory rate, breaths/min 20.13 (2.40) 20.17 (2.23) 19.91 (3.14) 0.051

  Pulse pressure, mmHg 50.50 (17.58) 43.72 (16.03) 51.78 (17.57) < 0.001*

  Body temperature, °C 36.75 (0.77) 36.63 (0.87) 36.77 (0.75) 0.001*

  Peripheral oxygen saturation, % 96.25 (5.08) 94.86 (7.78) 96.52 (4.34) < 0.001*

Laboratory findings, mean (SD)

  Pondus Hydrogenii 7.39 (0.09) 7.35 (0.13) 7.40 (0.08) < 0.001*

  PaO2, mmHg 123.01 (67.01) 131.89 (83.60) 121.29 (63.19) 0.006*

  PaCO2, mmHg 36.84 (8.76) 35.05 (11.71) 37.18 (8.03) < 0.001*

  Lactic acid, mmol/L 2.89 (2.73) 4.53 (3.94) 2.57 (2.31) < 0.001*

  Base excess, mmol/L −2.13 (4.80) −5.49 (5.97) −1.48 (4.25) < 0.001*

  Hemoglobin, g/L 123.26 (28.50) 91.22 (28.32) 129.38 (24.11) < 0.001*

  Mean corpuscular volume, fl 88.86 (5.17) 88.72 (6.45) 88.89 (4.89) 0.560

  Mean Corpuscular Hemoglobin, pg 30.97 (2.10) 30.76 (2.87) 31.01 (1.92) 0.037*

  MCHC, g/L 348.48 (13.71) 346.34 (16.69) 348.89 (13.02) < 0.001*

  RDW, % 12.84 (1.30) 13.28 (1.78) 12.76 (1.17) < 0.001*

  Platelet count, × 109/L 202.42 (82.15) 169.67 (78.80) 208.70 (81.30) < 0.001*

  Mean platelet volume, fl 10.37 (1.02) 10.45 (1.04) 10.35 (1.01) 0.090

  WBC count, ×109/L 14.73 (6.50) 15.66 (7.35) 14.55 (6.31) 0.002*

  Neutrophil count, ×109/L 0.88 (1.07) 1.02 (2.60) 0.85 (0.23) 0.004*

  Eosinophil count, × 109/L 0.00 (0.02) 0.00 (0.05) 0.00 (0.01) 0.340

  Basophil count, ×109/L 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) < 0.001*

  Lymphocyte count, ×109/L 0.12 (0.35) 0.17 (0.85) 0.10 (0.10) < 0.001*

  Monocyte count, ×109/L 0.05 (0.05) 0.06 (0.11) 0.05 (0.02) 0.002*

  Fibrinogen, g/L 2.92 (1.66) 2.30 (1.85) 3.04 (1.59) < 0.001*

  Thrombin time, s 17.24 (14.30) 18.71 (16.12) 16.96 (13.92) 0.030*

  Prothrombin Time, s 15.89 (8.30) 19.76 (13.66) 15.16 (6.58) < 0.001*

  APTT, s 37.55 (16.07) 45.11 (25.14) 36.12 (13.23) < 0.001*

  International normalized ratio 1.27 (0.65) 1.68 (1.35) 1.19 (0.33) < 0.001*

  D-dimer level, μg/mL 9.93 (7.73) 12.85 (7.61) 9.37 (7.64) < 0.001*

  Alanine aminotransferase, U/L 98.57 (287.07) 139.51 (341.30) 90.75 (274.91) 0.002*

  Aspartate aminotransferase, U/L 133.15 (532.54) 198.93 (521.61) 120.59 (533.81) 0.009*

  γ-glutamyl transferase, U/L 47.03 (79.39) 39.31 (56.80) 48.50 (82.94) 0.039*

  Alkaline phosphatase, U/L 71.16 (52.89) 62.53 (68.06) 72.81 (49.31) < 0.001*

  Total bilirubin, umol/L 16.85 (28.78) 14.64 (30.66) 17.27 (28.40) 0.100

  Direct bilirubin, umol/L 7.13 (21.74) 6.81 (23.86) 7.20 (21.32) 0.750

  Total protein, g/L 62.38 (11.01) 49.99 (12.04) 64.75 (9.05) < 0.001*

  Albumin, g/L 37.45 (7.35) 29.92 (7.66) 38.89 (6.34) < 0.001*

  Blood creatinine, umol/L 87.64 (74.45) 108.37 (104.94) 83.68 (66.38) < 0.001*

  Blood urea nitrogen, mmol/L 6.83 (4.87) 7.84 (6.33) 6.64 (4.51) < 0.001*

  Serum uric acid, umol/L 341.32 (140.79) 354.63 (147.54) 338.78 (139.36) 0.045*
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(the 1-se criteria). The LR model was subsequently devel-
oped according to the feature combination (hereinaf-
ter referred to as model 1). Secondly, based on the first 
vital sign data of the patients after admission, including 
HR, RR, PP, body temperature, and SpO2, the LR model 
(hereinafter referred to as model 2) was developed. 
In this study, model 1 and model 2 both used ten-fold 
cross-validation. Models 1 and 2 were compared with 
the commonly used clinical scores related to traumatic 
hemorrhage: the TASH and PWH scores. Finally, the cor-
responding web calculator was developed based on the 
model with the best prediction effect (Supplementary 
Fig. 1).

Model evaluation and statistical analysis
The discrimination of the prediction model was assessed 
using the receiver operating characteristic (ROC) curve, 
and the calibration plot together with the unreliability 
test was used for evaluating the accuracy of the predic-
tion [17]. The clinical utility of the model was evaluated 
with decision curve analysis [18]. We used Stata17, R4.1.3 
for statistical analysis, and Java. JDK1.8 for web calcula-
tor development. The quantitative data were expressed as 
mean (standard deviation), the differences were analyzed 

by the t-test; the classified data were expressed by n (%), 
and the differences were analyzed by the Chi-square test. 
P < 0.05 was considered statistically significant.

Results
Comparison of baseline characteristics
This study included 4032 patients with trauma in the 
emergency department rescue room in the trauma data-
base. After applying the exclusion criteria, 2353 patients 
remained, with an average age (standard deviation) of 
47.25 (17.34) years; 1819 (77.31%) patients were male. 
Among them, there were 377 (16.02%) patients with 
massive hemorrhage, including 362 (15.38%) patients 
who underwent massive transfusion and 15 (0.64%) 
who underwent embolization or hemostatic surgery 
(Fig.  1). We extracted 62 potential predictive variables 
for each patient and compared the baseline character-
istics of the patients in the massive hemorrhage group 
with those of the patients in the non-massive hemor-
rhage group (Table  1). According to statistical analysis, 
the patients with massive hemorrhage were more likely 
to have unconsciousness (P = 0.011), accelerated HR 
(P<0.001), decreased PP (P<0.001) and SpO2 (P<0.001), 
decreased base excess (BE) (P<0.001) and hemoglobin 

P value is the difference analysis result between the massive hemorrhage group and the non-massive hemorrhage group. The quantitative data were expressed 
by mean (SD); the differences were analyzed by the t-test. The classified data were expressed by n (%), and the differences were analyzed by the Chi-square test. * 
represents the difference is statistically significant. SD Standard deviation, PaO2 Partial pressure of oxygen in arterial blood, PaCO2 partial pressure of carbon dioxide 
in arterial blood, MCHC Mean corpuscular hemoglobin concentration, RDW Red cell distribution width, WBC White blood cell, APTT Activated partial thromboplastin 
time, Pro-BNP Pro-brain natriuretic peptide, CT Computed tomography; FAST focused assessment with sonography for trauma

Table 1  (continued)

Characteristic Total Massive Hemorrhage P value

Yes No

  Sodium, mmol/L 139.20 (5.01) 140.28 (4.96) 139.00 (5.00) < 0.001*

  Potassium, mmol/L 3.83 (0.61) 3.90 (0.77) 3.82 (0.58) 0.013*

  Calcium, mmol/L 1.91 (0.41) 1.80 (0.33) 1.93 (0.42) < 0.001*

  Chloride, mmol/L 104.60 (5.69) 107.58 (6.41) 104.03 (5.36) < 0.001*

  Phosphorus, mmol/L 0.97 (0.43) 1.13 (0.60) 0.94 (0.37) < 0.001*

  Magnesium, mmol/L 0.81 (0.13) 0.79 (0.15) 0.82 (0.12) 0.003*

  Creatine kinase, U/L 1179.65 (4600.74) 1791.84 (4063.52) 1063.05 (4687.99) 0.005*

  Creatine kinase isoenzyme, ng/ml 12.18 (31.01) 20.73 (33.47) 10.54 (30.26) < 0.001*

  Myoglobin, ng/ml 914.82 (2677.44) 1957.96 (3744.09) 715.80 (2370.86) < 0.001*

  Troponin T, ng/ml 0.10 (1.23) 0.16 (0.34) 0.09 (1.34) 0.330

  Pro-BNP, pg/ml 627.56 (3075.27) 690.54 (3209.17) 615.57 (3049.79) 0.660

  Amylase, U/L 103.47 (196.55) 135.41 (230.84) 97.38 (188.76) < 0.001*

  Lipase, U/L 143.74 (366.58) 166.30 (336.37) 139.44 (371.98) 0.190

  Lactate dehydrogenase, U/L 415.85 (514.39) 503.69 (510.98) 399.12 (513.46) < 0.001*

  Blood glucose, mmol/L 9.08 (3.83) 10.45 (4.94) 8.82 (3.52) < 0.001*

  C-reactive protein, mg/dl 2.47 (4.78) 2.52 (4.65) 2.46 (4.80) 0.810

Imaging results, n (%)

  Displaced pelvic fracture 272 (11.56%) 96 (25.46%) 176 (8.91%) < 0.001*

  CT scan or FAST positive 883 (37.53%) 216 (57.30%) 667 (33.76%) < 0.001*
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(HB) (P<0.001), displaced pelvic fracture (P<0.001), and a 
CT scan or FAST positive for hemorrhage (P<0.001).

Development of a prediction model of massive 
hemorrhage in trauma based on LASSO feature selection
We included 62 potential predictive variables commonly 
measured at admission in LASSO regression for feature 
selection, used ten-fold cross-validation to determine 
the penalty coefficient λ, and took 1 standard error (1-se) 
of the minimum λ as the optimal value (Supplementary 
Fig.  2a, 2b). The final feature combination contained 
seven indicators, namely: HR, PP, HB, BE, C-reactive pro-
tein, displaced pelvic fracture, and a positive CT scan or 
FAST. C-reactive protein was excluded because there was 
no significant difference in univariate analysis (P = 0.810). 
Finally, based on HR, PP, HB, BE, displaced pelvic frac-
ture, and positivity of CT scan or FAST, we developed a 
multivariable LR model, namely, model 1. The OR (95% 
CI) and P values of 6 predictive variables in model 1 are 
shown in Table 2.

We used ten-fold cross-validation for the internal vali-
dation of model 1. First of all, by drawing the ROC curve 
of model 1 (Fig. 2), the area under the curve (AUC) was 
calculated to be 0.894 (95% CI: 0.875–0.912), which 
shows that model 1 has excellent discrimination and can 
adequately distinguish between trauma patients with and 
without massive hemorrhage. Secondly, the calibration 
curve of model 1 (Fig. 3a) shows that model 1 has a good 
calibration (P = 0.405) and that the prediction risk of 
massive hemorrhage in trauma is close to its actual risk. 
Finally, the decision curve of model 1 (Fig. 4a) shows that 

the use of model 1 to predict the risk of massive hemor-
rhage adds more clinical value than the assumption that 
all patients have massive hemorrhage or non-massive 
hemorrhage.

Development of a prediction model of massive 
hemorrhage in trauma based on vital signs
We further used vital signs as predictive variables and 
developed model 2 based on the LR method. The OR 
(95% CI) and P values of the five predictive variables of 
model 2 are shown in Table  3. We used ten-fold cross-
validation for internal validation of model 2. First of all, 
by drawing the ROC curve of model 2 (Fig. 2), the AUC 
was calculated to be 0.718 (95% CI: 0.679–0.757), which 
shows that model 2 has good discrimination. Secondly, 

Fig. 1  Flow chart of patient selection from the trauma database

Table 2  Multivariable logistic regression model based on LASSO 
feature selection

LASSO Least absolute shrinkage and selection operator, OR Odds ratio, CI 
Confidence interval, CT Computed tomography, FAST Focused assessment with 
sonography for trauma

Intercept and Variables β OR (95% CI) P value

Heart rate 0.013 1.01 (1.01, 1.02) < 0.001

Pulse pressure −0.014 0.99 (0.98, 0.99) 0.004

Base excess −0.104 0.90 (0.87, 0.93) < 0.001

Hemoglobin −0.048 0.95 (0.95, 0.96) < 0.001

Displaced pelvic fracture 0.757 2.13 (1.48, 3.06) < 0.001

CT scan or FAST positive 0.484 1.62 (1.21, 2.18) 0.001

Intercept 2.419 < 0.001
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the calibration curve of model 2 (Fig.  3b) showed that 
model 2 has a good calibration (P = 0.243). Finally, the 
decision curve of model 2 (Fig. 4b) shows that there are 
some clinical benefits from using model 2 to predict the 
risk of massive hemorrhage.

Comparison of prediction models for massive hemorrhage 
in trauma
We compared the effects of model 1 and model 2. First, 
the AUCs of models 1 and 2 were found to be signifi-
cantly different (P < 0.001). The discrimination of model 
1 was better than that of model 2. Secondly, the cali-
bration curve of model 1 (P = 0.405) was closer to the 
diagonal line of the calibration plot than that of model 
2 (P = 0.243), with better calibration (Fig. 3a, b). Finally, 
the decision curve of model 1 was further away from the 
two reference lines of “All” and “None” and had a higher 
net benefit than model 2 under the same threshold prob-
ability (Fig. 4a, b). In general, model 1, based on LASSO 
feature selection, has a better performance than model 
2, which was based solely on vital signs as predictive 
variables.

In addition, by comparing model 1 and model 2 with 
TASH score (AUC: 0.860) and PWH score (AUC: 0.851) 
(Supplementary Table  1), we found that the AUC of 
model 1 was better than those of the TASH and PWH 

scores; the AUCs of the TASH and PWH scores were 
better than that of model 2 (Fig. 2).

Development of web calculator for prediction model 
of massive hemorrhage in trauma
To facilitate the use and validation of our model by medi-
cal staff and the public at home and abroad, we have 
developed a public web calculator (Supplementary Fig. 3) 
for the traumatic massive hemorrhage prediction model 
based on LASSO feature selection (model 1). The web-
site is http://​82.​156.​217.​249:​8080/; it supports the clinical 
early prediction of massive hemorrhage risk in trauma.

Discussion
We developed two clinical prediction models, then 
launched a public web calculator based on the better 
model, so that healthcare workers, as well as the public 
around the world, can use and validate our model. Clini-
cians can use the web calculator to personalize the risk 
of massive hemorrhage in hospitalized patients with 
trauma. If the estimated risk of massive hemorrhage in a 
patient is low, clinicians may choose to continue moni-
toring the patient, while high-risk estimates may be more 
supportive of aggressive massive transfusion protocols or 
surgical intervention.

LASSO regression is a feature selection method that 
has attracted much attention and has been widely used 

Fig. 2  Comparison of ROC curves of model 1, model 2, TASH score, and PWH score. ROC: receiver operating characteristic curve; AUC: area under 
the curve; TASH: trauma-associated severe hemorrhage; PWH: Prince of Wales

http://82.156.217.249:8080/
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Fig. 3  The calibration plot of the models for predicting massive hemorrhage in trauma. a: model 1 (P = 0.405); b: model 2 (P = 0.243). Calibration 
focuses on the accuracy of the absolute risk prediction of the model, that is, the consistency between the probability of massive hemorrhage in 
trauma predicted by the model and that actually observed. The y-axis represents the actual rate of massive hemorrhage. The x-axis represents the 
predicted probability of massive hemorrhage. For a well-calibrated model, the scatter points should be arranged along a 45-degree diagonal line. 
P > 0.05 means no significant difference, and the calibration of the model is good
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Fig. 4  Decision curve analysis of the models for predicting massive hemorrhage in trauma. a: model 1; b: model 2. The y-axis measures the net 
benefit. The x-axis represents the threshold probability. The red line represents the model’s decision curve. The “All” line represents the assumption 
that all patients have a massive hemorrhage. The “None” line represents the assumption that no patients have a massive hemorrhage. The further 
the model’s decision curve is from the “All” and “None” reference lines, the higher the net benefit of the model at the same threshold probability
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in recent years. It introduces L1 regularization based 
on least squares regression, which can negate a certain 
degree of overfitting and improve the predictive perfor-
mance of the model for unknown samples. LASSO is 
different from traditional stepwise regression, as it can 
deal with all variables at the same time, not in a stepwise 
manner. If the correlation between potential predictive 
variables is high, LASSO chooses only one of them and 
reduces the coefficients of other predictive variables to 0, 
so it can solve the problem of multicollinearity between 
variables. In addition, LASSO has many advantages, such 
as a fast calculation speed and easy model interpretation, 
among others [16]. Model 1, which was developed based 
on LASSO regression, was preliminarily proven to be 
better than the TASH score, PWH score, and model 2.

Presently, the prediction models related to traumatic 
hemorrhage reported in the literature mainly use mas-
sive transfusion as the outcome variable [19–22]. How-
ever, massive transfusion cannot explain all the clinically 
important results related to massive hemorrhage. For 
example, before the standard for massive transfusion is 
reached, hemostatic intervention may have been per-
formed for patients with massive hemorrhage. Therefore, 
competing risk bias may occur when massive transfu-
sion is used alone as an outcome variable in a predic-
tion model [15]. In addition, the traditional definition of 
massive transfusion of ≥10 units of RBCs within 24 hours 
should be considered obsolete. The critical administra-
tion threshold (CAT) that defines the reception of three 
or more units of RBCs during a single hour anytime 
during the first 24 hours of arrival can identify patients 
with massive hemorrhage more accurately and mini-
mize survivor bias [4, 23]. Therefore, our study used that 
definition of massive transfusion or “embolization or 
hemostatic surgery” within 24 hours of admission as the 
screening criteria for traumatic massive hemorrhage, 
emphasizing the severity of hemorrhage rather than the 
amount of blood transfusion, and using the modern defi-
nition of CAT instead of the traditional definition of mas-
sive transfusion.

In this study, model 1 was developed based on HR, PP, 
BE, HB, displaced pelvic fracture, and a positive CT scan 
or FAST. In clinical practice, the above six indices play an 
important role in indicating the condition of traumatic 
massive hemorrhage. Previous studies have also found 
that the above indicators are closely related to traumatic 
hemorrhage. For example, the traumatic bleeding sever-
ity score based on the clinical data of 119 patients with 
severe trauma included systolic blood pressure (SBP), a 
positive FAST, and pelvic fractures as predictive variables 
[24]. The Vandromme score, based on the data of 6638 
trauma patients from the Trauma Center of the Univer-
sity of Alabama at Birmingham, included HR, SBP, and 
HB as predictive variables [25]. The Larson score, devel-
oped based on the data of US military service personnel 
in the Joint Theater Trauma Registry transfusion data-
base, included HR, SBP, base deficit, and HB as predictive 
variables [26].

Among the current scoring systems related to trau-
matic massive hemorrhage, we selected the widely 
employed TASH and PWH scores to compare with our 
clinical prediction model. The TASH score was origi-
nally developed and validated based on the data of 6044 
patients with severe blunt trauma in the TraumaRegister 
DGU® database [10]. In the original study with the TASH 
score, AUC was 0.887 (95% CI: 0.864–0.910). The PWH 
score was developed and validated based on the data of 
1891 trauma patients in the administrative trauma data-
base of the Prince of Wales Hospital [11]. In the original 
study of the PWH score, the sensitivity was 31.5%, the 
specificity was 99.7%, and the AUC was 0.889. The TASH 
and PWH scores were externally validated in the trauma 
dataset and compared with model 1 (Fig. 2). The predic-
tive ability of model 1 was better than that of the TASH 
score as well as that of the PWH score. Thus, the TASH 
and PWH scores were found to maintain a high AUC in 
the original literature research, but, when applied to the 
trauma dataset of Chinese PLA General Hospital for 
external validation, the AUC decreased slightly, and the 
respective accuracies of the two models were not as good 
as that of model 1. This may be caused by the differences 
in physiology, disease processes, and disease outcomes of 
the study population caused by regional and ethnic dif-
ferences [27]. In addition, with the passage of time, the 
effectiveness of the models will decline variably; param-
eters need to be continuously adjusted and optimized.

This study further developed model 2 based on the 
first recorded data of five vital sign indicators after 
admission. The reasons for choosing vital signs indi-
cators to develop a prediction model include: first 
of all, since vital sign data are easy to obtain in both 
pre-hospital and in-hospital environments, medical 
staff can easily record the data regularly and make risk 

Table 3  Multivariable logistic regression model based on vital 
signs

OR Odds ratio, CI Confidence interval

Intercept and Variables β OR (95% CI) P value

Heart rate 0.023 1.02 (1.02, 1.03) < 0.001

Pulse pressure −0.025 0.98 (0.97, 0.98) < 0.001

Respiratory rate −0.058 0.94 (0.90, 0.99) 0.017

Body temperature −0.264 0.77 (0.65, 0.90) < 0.001

Peripheral oxygen saturation −0.026 0.97 (0.96, 0.99) 0.010

Intercept 10.553 < 0.001
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predictions the first time after admission, instead of 
waiting for laboratory test results and imaging results, 
which helps to improve the timeliness of the model. 
Second, simple feature selection ensures that the pre-
diction model can be recalculated based on repeatedly 
measured vital sign data during pre-hospital first aid 
or emergency triage, providing valuable information 
about whether the patients are responding to treat-
ment. This makes it easier for medical professionals to 
modify their treatment plans. Finally, the simplicity of 
the prediction model input and output improves the 
interpretability of the model, which increases the like-
lihood that healthcare providers will trust the model’s 
predicted results. In this study, the predictive ability of 
model 2 was not as high as that of model 1, and there 
was a certain gap between model 2 and traditional 
TASH and PWH scores as well. However, thanks to 
the advantages of immediate prediction, repeatable 
prediction, and timeliness, model 2 has good clinical 
practical value and is still worthy of further explora-
tion in the future.

This study had certain limitations. First, the study 
population comprised adult patients, and further sub-
group study based on age was not considered. Age 
plays an important role in predicting the risk of trau-
matic massive hemorrhage. Some studies have shown 
that the physiological reserve of elderly patients is less 
than that of their younger counterparts and that they 
are more likely to have massive hemorrhages [28]. In 
future research, we will divide the patients into dif-
ferent subgroups according to their age for further 
analysis. Second, the study used two screening strate-
gies including massive transfusion and embolization or 
hemostatic surgery to cover as many trauma patients 
with massive hemorrhage as possible. It is undeniable 
that a small number of patients were still not included 
in the study population because they either refused 
to undertake the examination and treatment or died 
before receiving treatment. We will include trauma 
patients with massive hemorrhage-related deaths in 
future studies to further reduce survivor bias. Third, 
the prediction models of massive hemorrhage in 
trauma can only guide the doctor’s clinical decision-
making process and cannot replace the doctor’s clini-
cal judgment and other diagnostic tests. Finally, this 
was a retrospective observational study. Although the 
quality of the trauma database is high, there are still 
data losses and input errors. In future studies, we will 
include multicenter data, further expand the sample 
size, conduct external validation, include prospectively 
collected data, and further validate and evaluate the 
effectiveness of the traumatic prediction models in 
clinical practice.

Conclusions
We developed two clinical prediction models and a corre-
sponding web calculator. Among them, the multivariable 
LR model developed based on LASSO feature selection 
results, which includes six variables commonly measured 
on admission to a hospital, has better prediction effects 
than the multivariable LR model developed based on 
vital signs and common clinical scores related to trau-
matic hemorrhage. Estimating the risk of massive hemor-
rhage in trauma could help identify trauma patients who 
are and are not likely to develop massive hemorrhage to 
ensure appropriate treatment and optimize the use of 
medical resources.
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